| People | Locations | Statistics |
|---|---|---|
| Mouftah, Hussein T. |
| |
| Dugay, Fabrice |
| |
| Rettenmeier, Max |
| |
| Tomasch, Ernst | Graz |
|
| Cornaggia, Greta |
| |
| Palacios-Navarro, Guillermo |
| |
| Uspenskyi, Borys V. |
| |
| Khan, Baseem |
| |
| Fediai, Natalia |
| |
| Derakhshan, Shadi |
| |
| Somers, Bart | Eindhoven |
|
| Anvari, B. |
| |
| Kraushaar, Sabine | Vienna |
|
| Kehlbacher, Ariane |
| |
| Das, Raj |
| |
| Werbińska-Wojciechowska, Sylwia |
| |
| Brillinger, Markus |
| |
| Eskandari, Aref |
| |
| Gulliver, J. |
| |
| Loft, Shayne |
| |
| Kud, Bartosz |
| |
| Matijošius, Jonas | Vilnius |
|
| Piontek, Dennis |
| |
| Kene, Raymond O. |
| |
| Barbosa, Juliana |
|
Manseur, Farida
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2020Robust routing, its price, and the tradeoff between routing robustness and travel time reliability in road networkscitations
- 2018Robust routing, its price, and the tradeoff between routing robustness and travel time reliability in road networkscitations
- 2017Algorithms for optimal guidance of users in road networks ; Algorithmes de guidage optimal des usagers dans les réseaux routiers
- 2017An Algorithm for Robust Routing Strategies in Networkscitations
- 2017Algorithmes pour un guidage optimal des usagers dans les réseaux de transport ; Algorithms for optimal guidance of users in road networks
- 2016Robust adaptive strategies for the guidance of users in road networks
Places of action
| Organizations | Location | People |
|---|
conferencepaper
Robust adaptive strategies for the guidance of users in road networks
Abstract
EWGT2016 - Euro Working Group on Transportation, Istanbul, TURQUIE, 05-/09/2016 - 07/09/2016 ; We present an algorithm for optimal guidance of users in road networks. It is a "stochastic-on-time-arrival (SOTA)"-like algorithm which calculates optimal guidance strategies with reliable paths, for road network origin-destination pairs. Our contribution consists here in extending an existing SOTA algorithm, in order to include robustness of the guidance strategy, towards path failures. The idea of SOTA algorithms is to calculate the maximum probability of reaching a destination node, starting from any node of a road network, and given a time budget. This calculus gives the optimal path for every origin destination pair of nodes in the network, with an associated optimal adaptive guidance strategy, and with respect to the considered time budget. The approach models very well the importance of the travel time variability in the route choice process. Indeed, by adopting this kind of guidance strategies, users may accept short deteriorations on the average travel time, if in return, they have a guarantee on the reliability of the travel time (in term of the maximum probability of reaching their destinations in given time budgets). We propose here an extension of this approach in order to take into account the existence and the performance of alternative detours of the selected paths, in the calculus of the guidance strategy. We take into account the fact that one or many links of the selected optimal path may fail during the travel. We then consider that users may be sensitive to path changing. That is to say that they may prefer paths with efficient alternative detours, with respect to paths without, or with less efficient detours, even with a loss in the average travel time, and/or in its reliability. In order to take into account such behaviors, we propose a model that includes the existence as well as the performance of detours for selected paths, in the calculus of the travel time reliability (i.e. the maximum ...
Topics
Search in FID move catalog