| People | Locations | Statistics |
|---|---|---|
| Mouftah, Hussein T. |
| |
| Dugay, Fabrice |
| |
| Rettenmeier, Max |
| |
| Tomasch, Ernst | Graz |
|
| Cornaggia, Greta |
| |
| Palacios-Navarro, Guillermo |
| |
| Uspenskyi, Borys V. |
| |
| Khan, Baseem |
| |
| Fediai, Natalia |
| |
| Derakhshan, Shadi |
| |
| Somers, Bart | Eindhoven |
|
| Anvari, B. |
| |
| Kraushaar, Sabine | Vienna |
|
| Kehlbacher, Ariane |
| |
| Das, Raj |
| |
| Werbińska-Wojciechowska, Sylwia |
| |
| Brillinger, Markus |
| |
| Eskandari, Aref |
| |
| Gulliver, J. |
| |
| Loft, Shayne |
| |
| Kud, Bartosz |
| |
| Matijošius, Jonas | Vilnius |
|
| Piontek, Dennis |
| |
| Kene, Raymond O. |
| |
| Barbosa, Juliana |
|
Crozier, C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2020Conic optimisation for electric vehicle station smart charging with battery voltage constraintscitations
- 2020The impact of domestic electric vehicle charging on electricity networks
- 2020Coordinated electric vehicle charging to reduce losses without network impedancescitations
- 2020The opportunity for smart charging to mitigate the impact of electric vehicles on transmission and distribution systemscitations
- 2019Mitigating the impact of personal vehicle electrification: a power generation perspectivecitations
- 2018Mitigating the Impact of Personal Vehicle Electrification: a Power Generation Perspectivecitations
- 2018Clustering of Usage Profiles for Electric Vehicle Behaviour Analysiscitations
Places of action
| Organizations | Location | People |
|---|
article
Conic optimisation for electric vehicle station smart charging with battery voltage constraints
Abstract
This paper proposes a new convex optimisation strategy for coordinating electric vehicle charging, which accounts for battery voltage rise, and the associated limits on maximum charging power. Optimisation strategies for coordinating electric vehicle charging commonly neglect the increase in battery voltage which occurs as the battery is charged. However, battery voltage rise is an important consideration, since it imposes limits on the maximum charging power. This is particularly relevant for DC fast charging, where the maximum charging power may be severely limited, even at moderate state of charge levels. First, a reduced order battery circuit model is developed, which retains the nonlinear relationship between state of charge and maximum charging power. Using this model, limits on the battery output voltage and battery charging power are formulated as second-order cone constraints. These constraints are integrated with a linearised power flow model for three-phase unbalanced distribution networks. This provides a new multiperiod optimisation strategy for electric vehicle smart charging. The resulting optimisation is a second-order cone program, and thus can be solved in polynomial time by standard solvers. A receding horizon implementation allows the charging schedule to be updated online, without requiring prior information about when vehicles will arrive.
Topics
Search in FID move catalog