Mobility Compass

Discover mobility and transportation research. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Mobility Compass is an open tool for improving networking and interdisciplinary exchange within mobility and transport research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

To Graph

7.909 Topics available

To Map

770 Locations available

380.250 PEOPLE
380.250 People People

380.250 People

Show results for 380.250 people that are selected by your search filters.

←

Page 1 of 15210

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Tekkaya, A. Erman
  • 4
  • 17
  • 97
  • 2024
Förster, Peter
  • 3
  • 11
  • 13
  • 2024
Mudimu, George T.
  • 3
  • 4
  • 0
  • 2024
Shibata, Lillian Marie
  • 1
  • 7
  • 0
  • 2024
Talabbeydokhti, Nasser
  • 1
  • 3
  • 1
  • 2024
Laffite, Ernesto Dante Rodriguez
  • 1
  • 7
  • 8
  • 2024
Schöpke, Benito
  • 1
  • 3
  • 1
  • 2024
Gobis, Anna
  • 4
  • 38
  • 18
  • 2024
Alfares, Hesham K.
  • 4
  • 4
  • 148
  • 2024
Münzel, Thomas
  • 30
  • 243
  • 1k
  • 2024
Joy, Gemini Velleringatt
  • 1
  • 3
  • 1
  • 2024
Oubahman, Laila
  • 1
  • 2
  • 2
  • 2024
Filali, Youssef
  • 2
  • 8
  • 4
  • 2024
Philippi, Paula
  • 1
  • 4
  • 3
  • 2024
George, Alinda
  • 3
  • 4
  • 10
  • 2024
Lucia, Caterina De
  • 1
  • 3
  • 0
  • 2024
Avril, Ludovic
  • 1
  • 5
  • 1
  • 2024
Belachew, Zigyalew Gashaw
  • 1
  • 1
  • 0
  • 2024
Kassens-Noor, EvaDarmstadt
  • 43
  • 54
  • 410
  • 2024
Cho, Seongchul
  • 1
  • 7
  • 1
  • 2024
Tonne, Cathryn
  • 13
  • 145
  • 1k
  • 2024
Hosseinlou, Farhad
  • 4
  • 12
  • 3
  • 2024
Ganvit, Harsh
  • 1
  • 2
  • 1
  • 2024
Schmitt, Konrad Erich Kork
  • 2
  • 6
  • 41
  • 2024
Grimm, Daniel
  • 7
  • 21
  • 63
  • 2024

Bäker, Bernard

  • Google
  • 14
  • 33
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2022Field Data Analysis of a Commercial Vehicle Fleet in Relation to the Load of the HV Batterycitations
  • 2021Active Output Selection for an HEV Boost Maneuvercitations
  • 2021Phenomenological, Measurement Based LiDAR Sensor Model1citations
  • 2021Simulation of Shield Current in Automotive High Voltage Systemscitations
  • 2021Data-Enhanced Battery Simulator for Testing Electric Powertrains1citations
  • 2019Messelektronik in faser-elastomerverbünden zur drahtlosen und echtzeitfähigen messwerterfassung in motorradreifencitations
  • 2019Energetisch optimal bemessene elektrische Maschinen für Mildhybridfahrzeugecitations
  • 2017Optimal Velocity and Power Split Control of Hybrid Electric Vehiclescitations
  • 2016Analyse notwendiger Anforderungen an das Autonome Fahren im Automobilbereich und Übertragbarkeit auf Baumaschinencitations
  • 2015Design and Analysis of an adaptive λ-Tracking Controller for powered Gearshifts in automatic Transmissionscitations
  • 2015Entwurf und Evaluierung einer prädiktiven Fahrstrategie auf Basis von Ampel-Fahrzeug-Kommunikationsdatencitations
  • 2015Energiemanagement für eine parallele Hybridfahrzeugarchitekturcitations
  • 2014Modellbasierte Optimalsteuerung im Energiemanagement des Kraftfahrzeugscitations
  • 2010Automobilkompetenz der TU Dresdencitations

Places of action

Chart of shared publication
Kleemann, Jörg
1 / 2 shared
Schuler, Christoph
1 / 1 shared
Michalski, Jens
1 / 1 shared
Hadler, Kerstin
1 / 1 shared
Pillas, Julien
1 / 1 shared
Prochaska, Adrian
1 / 1 shared
Robel, Christopher
1 / 1 shared
Schmitt, Jakob
1 / 1 shared
Fodor, Denes
1 / 1 shared
Pazmany, Jozsef Gabor
1 / 1 shared
Gesner, Philipp
1 / 1 shared
Jakobi, Richard
1 / 1 shared
Klein, Philipp
1 / 3 shared
Horstkötter, Ivo
1 / 1 shared
Batzdorf, Andy
1 / 1 shared
Zimmermann, Rico
1 / 2 shared
Prokop, Günther
1 / 344 shared
Dirnberger, Markus
1 / 2 shared
Herzog, Hans-Georg
1 / 11 shared
Uebel, Stephan
2 / 4 shared
Schubert, Torsten
2 / 6 shared
Loepelmann, Peter
1 / 2 shared
Reuss, Hans-Christian
1 / 22 shared
Schuricht, Philipp
1 / 1 shared
Tempelhahn, Conny
1 / 2 shared
Helbing, Maximilian
1 / 2 shared
Appelt, Christian
1 / 1 shared
Tsatsaronis, George
1 / 1 shared
Drückhammer, Jens
1 / 1 shared
Zellbeck, Hans
1 / 1 shared
Hufenbach, Werner A.
1 / 1 shared
Chart of publication period
2022
2021
2019
2017
2016
2015
2014
2010

Co-Authors (by relevance)

  • Kleemann, Jörg
  • Schuler, Christoph
  • Michalski, Jens
  • Hadler, Kerstin
  • Pillas, Julien
  • Prochaska, Adrian
  • Robel, Christopher
  • Schmitt, Jakob
  • Fodor, Denes
  • Pazmany, Jozsef Gabor
  • Gesner, Philipp
  • Jakobi, Richard
  • Klein, Philipp
  • Horstkötter, Ivo
  • Batzdorf, Andy
  • Zimmermann, Rico
  • Prokop, Günther
  • Dirnberger, Markus
  • Herzog, Hans-Georg
  • Uebel, Stephan
  • Schubert, Torsten
  • Loepelmann, Peter
  • Reuss, Hans-Christian
  • Schuricht, Philipp
  • Tempelhahn, Conny
  • Helbing, Maximilian
  • Appelt, Christian
  • Tsatsaronis, George
  • Drückhammer, Jens
  • Zellbeck, Hans
  • Hufenbach, Werner A.
OrganizationsLocationPeople

document

Phenomenological, Measurement Based LiDAR Sensor Model

  • Bäker, Bernard
  • Robel, Christopher
  • Schmitt, Jakob
Abstract

The advancing automation within the mobility sector poses new challenges. The open parameter space of potential traffic scenarios turns out to be difficult in the development and certification of advanced driver assistance systems. Scenario based, simulative validation of driving functions appears to be a promising solution. Given the assumption that only a fraction of all traffic scenarios is safety critical and should be considered for the evaluation of driver assistance systems, a simulation based selection of test relevant driving scenarios can be carried out. With realistic sensor models available the virtual testing of driver assistance systems is cheaper and faster than conventional test drives. Phenomenological sensor models do not require detailed environment models and therefore compromise accuracy and effort. The objective of this work is the development of a phenomenological LiDAR sensor model that reproduces the actual, measured detection capability of LiDAR sensors. Avoiding empirical radar backscatter cross sections, that strongly distort the detection capability of conventional LiDAR sensor models and mapping the measured detection capability onto the phenomenological LiDAR sensor model promises enhanced model accuracy over traditional phenomenological modeling approaches.

Topics
  • simulation
  • engine
  • assessment
  • driving
  • driver
  • driver support system
  • modeling
  • automotive engineering
  • industry
  • safety
  • sensor
  • sensor
  • automation
  • validation
  • laser radar
  • certification
  • backscattering

Search in FID move catalog