Mobility Compass

Discover mobility and transportation research. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Mobility Compass is an open tool for improving networking and interdisciplinary exchange within mobility and transport research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

To Graph

8.032 Topics available

To Map

944 Locations available

509.604 PEOPLE
509.604 People People

509.604 People

Show results for 509.604 people that are selected by your search filters.

←

Page 1 of 20385

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Mouftah, Hussein T.
  • 1
  • 1
  • 2
  • 2025
Dugay, Fabrice
  • 3
  • 17
  • 6
  • 2025
Rettenmeier, Max
  • 4
  • 4
  • 28
  • 2025
Tomasch, ErnstGraz
  • 57
  • 166
  • 211
  • 2025
Cornaggia, Greta
  • 1
  • 4
  • 0
  • 2025
Palacios-Navarro, Guillermo
  • 1
  • 4
  • 2
  • 2025
Uspenskyi, Borys V.
  • 1
  • 3
  • 0
  • 2025
Khan, Baseem
  • 8
  • 38
  • 115
  • 2025
Fediai, Natalia
  • 6
  • 4
  • 6
  • 2025
Derakhshan, Shadi
  • 1
  • 0
  • 0
  • 2025
Somers, BartEindhoven
  • 13
  • 42
  • 246
  • 2025
Anvari, B.
  • 9
  • 31
  • 126
  • 2025
Kraushaar, SabineVienna
  • 2
  • 13
  • 0
  • 2025
Kehlbacher, Ariane
  • 10
  • 18
  • 14
  • 2025
Das, Raj
  • 3
  • 3
  • 17
  • 2025
Werbińska-Wojciechowska, Sylwia
  • 12
  • 12
  • 25
  • 2025
Brillinger, Markus
  • 4
  • 42
  • 4
  • 2025
Eskandari, Aref
  • 2
  • 13
  • 18
  • 2025
Gulliver, J.
  • 9
  • 74
  • 555
  • 2025
Loft, Shayne
  • 1
  • 9
  • 0
  • 2025
Kud, Bartosz
  • 1
  • 6
  • 0
  • 2025
Matijošius, JonasVilnius
  • 33
  • 89
  • 297
  • 2025
Piontek, Dennis
  • 6
  • 33
  • 30
  • 2025
Kene, Raymond O.
  • 2
  • 2
  • 30
  • 2025
Barbosa, Juliana
  • 3
  • 15
  • 11
  • 2025

An, Xiangdong

  • Google
  • 7
  • 8
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Array PPP-RTK: A High Precision Pose Estimation Method for Outdoor Scenarios11citations
  • 2023From RTK to PPP-RTK: towards real-time kinematic precise point positioning to support autonomous driving of inland waterway vessels21citations
  • 2023High Definition Mapping for Inland Waterways: Techniques, Challenges and Prospects3citations
  • 2023PPP-RTK with Rapid Convergence Based on SSR Corrections and Its Application in Transportation6citations
  • 2022Real-Time Multi-GNSS Precise Point Positioning with Instant Convergence for Inland Waterway Navigationcitations
  • 2022Precise Point Positioning to support an automatic entering of a waterway lockcitations
  • 2021Current Status of Precise Point Positioning algorithm development for highly automated inland vessel navigationcitations

Places of action

Chart of shared publication
Belles Ferreres, Andrea
1 / 2 shared
Medina, Daniel
2 / 15 shared
Lass, Christoph
6 / 15 shared
Hösch, Lukas
2 / 4 shared
Rizzi, Filippo Giacomo
1 / 3 shared
Ziebold, Ralf
5 / 25 shared
Llorente, Alonso
1 / 1 shared
Llerena, Juan Pedro
1 / 1 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Belles Ferreres, Andrea
  • Medina, Daniel
  • Lass, Christoph
  • Hösch, Lukas
  • Rizzi, Filippo Giacomo
  • Ziebold, Ralf
  • Llorente, Alonso
  • Llerena, Juan Pedro
OrganizationsLocationPeople

article

Array PPP-RTK: A High Precision Pose Estimation Method for Outdoor Scenarios

  • Belles Ferreres, Andrea
  • An, Xiangdong
  • Medina, Daniel
  • Lass, Christoph
  • Hösch, Lukas
  • Rizzi, Filippo Giacomo
Abstract

Advanced driver-assistance system (ADAS) and high levels of autonomy for vehicular applications require reliable and high precision pose information for their functioning. Pose estimation comprises solving the localization and orientation problem for a rigid body in a three-dimensional space. In outdoor scenarios, the fusion of Global Navigation Satellite Systems (GNSS) and inertial data in high-end receivers constitutes the baseline for ground truth localization solutions, such as Real-Time Kinematic (RTK) or Precise Point Positioning (PPP). These techniques present two main disadvantages, namely the inability to provide absolute orientation information and the lack of observations redundancy in urban scenarios. This paper presents Array PPP-RTK, a recursive three-dimensional pose estimation technique which fuses inertial and multi-antenna GNSS measurements to provide centimeters and sub-degree precision for positioning and attitude estimates, respectively. The core filter is based on adapting the well-known Extended Kalman Filter (EKF), such that it deals with parameters belonging to the SO(3) and GNSS integer ambiguity groups. The Array PPP-RTK observation model is also introduced, based on the combination of carrier phase measurements over multiple antennas along with State Space Representation (SSR) GNSS corrections. The performance assessment is based on the real data collected on an inland waterway scenario. The results demonstrate that a high precision solution is available 99.5% of the time, with a horizontal precision of around 6 cm and heading precision of 0.9 degrees. Despite the satellite occlusion after bridge passing, it is shown that Array PPP-RTK recovers high accurate estimates in less than ten seconds.

Topics
  • assessment
  • submarine
  • estimate
  • data
  • driver
  • driver support system
  • estimating
  • bridge
  • surveillance
  • filter
  • positioning
  • performance evaluation
  • position fixing
  • navigational satellite
  • base line
  • downsizing
  • redundancy
  • bridge
  • antenna
  • inland waterway
  • Aeo
  • Tanachbb
  • Aeck
  • Sadb
  • Talf
  • Tajbfcfab
  • Ccbc
  • Tandbba
  • Bbad
  • Magakcb
  • Daag
  • Acagc
  • Tahgac
  • Tahgbch
  • Eccb
  • Atfa
  • Ccbi
  • Taml
  • Bccda
  • Tammbb

Search in FID move catalog