Mobility Compass

Discover mobility and transportation research. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Mobility Compass is an open tool for improving networking and interdisciplinary exchange within mobility and transport research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

To Graph

8.032 Topics available

To Map

944 Locations available

509.604 PEOPLE
509.604 People People
509.604 People

Show results for 509.604 people that are selected by your search filters.

←

Page 1 of 20385

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Mouftah, Hussein T.
  • 1
  • 1
  • 2
  • 2025
Dugay, Fabrice
  • 3
  • 17
  • 6
  • 2025
Rettenmeier, Max
  • 4
  • 4
  • 28
  • 2025
Tomasch, ErnstGraz
  • 57
  • 166
  • 211
  • 2025
Cornaggia, Greta
  • 1
  • 4
  • 0
  • 2025
Palacios-Navarro, Guillermo
  • 1
  • 4
  • 2
  • 2025
Uspenskyi, Borys V.
  • 1
  • 3
  • 0
  • 2025
Khan, Baseem
  • 8
  • 38
  • 115
  • 2025
Fediai, Natalia
  • 6
  • 4
  • 6
  • 2025
Derakhshan, Shadi
  • 1
  • 0
  • 0
  • 2025
Somers, BartEindhoven
  • 13
  • 42
  • 246
  • 2025
Anvari, B.
  • 9
  • 31
  • 126
  • 2025
Kraushaar, SabineVienna
  • 2
  • 13
  • 0
  • 2025
Kehlbacher, Ariane
  • 10
  • 18
  • 14
  • 2025
Das, Raj
  • 3
  • 3
  • 17
  • 2025
Werbińska-Wojciechowska, Sylwia
  • 12
  • 12
  • 25
  • 2025
Brillinger, Markus
  • 4
  • 42
  • 4
  • 2025
Eskandari, Aref
  • 2
  • 13
  • 18
  • 2025
Gulliver, J.
  • 9
  • 74
  • 555
  • 2025
Loft, Shayne
  • 1
  • 9
  • 0
  • 2025
Kud, Bartosz
  • 1
  • 6
  • 0
  • 2025
Matijošius, JonasVilnius
  • 33
  • 89
  • 297
  • 2025
Piontek, Dennis
  • 6
  • 33
  • 30
  • 2025
Kene, Raymond O.
  • 2
  • 2
  • 30
  • 2025
Barbosa, Juliana
  • 3
  • 15
  • 11
  • 2025

Cruz Neto, João Xavier

  • Google
  • 7
  • 11
  • 68

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024On the Relationship Between the Kurdyka–Łojasiewicz Property and Error Bounds on Hadamard Manifolds1citations
  • 2022Strong Convergence of Alternating Projections2citations
  • 2022Combinatorial Convexity in Hadamard Manifolds: Existence for Equilibrium Problems3citations
  • 2019Computing Riemannian Center of Mass on Hadamard Manifolds9citations
  • 2018Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization of Hadamard Manifolds18citations
  • 2016Dual Descent Methods as Tension Reduction Systems2citations
  • 2016A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds33citations

Places of action

Chart of shared publication
Melo, Ítalo Dowell Lira
3 / 4 shared
Souza, J. C. O.
1 / 3 shared
Sousa, Paulo Alexandre
1 / 1 shared
Brito, José Márcio Machado
1 / 1 shared
Carvalho Bento, Glaydston
5 / 8 shared
Bitar, Sandro Dimy Barbosa
1 / 1 shared
Oliveira Souza, João Carlos
1 / 1 shared
Oliveira, Paulo Roberto
2 / 3 shared
Meireles, Lucas V.
1 / 1 shared
Sousa Júnior, Valdinês Leite
1 / 1 shared
Soubeyran, Antoine
1 / 5 shared
Chart of publication period
2024
2022
2019
2018
2016

Co-Authors (by relevance)

  • Melo, Ítalo Dowell Lira
  • Souza, J. C. O.
  • Sousa, Paulo Alexandre
  • Brito, José Márcio Machado
  • Carvalho Bento, Glaydston
  • Bitar, Sandro Dimy Barbosa
  • Oliveira Souza, João Carlos
  • Oliveira, Paulo Roberto
  • Meireles, Lucas V.
  • Sousa Júnior, Valdinês Leite
  • Soubeyran, Antoine
OrganizationsLocationPeople

document

Computing Riemannian Center of Mass on Hadamard Manifolds

  • Carvalho Bento, Glaydston
  • Bitar, Sandro Dimy Barbosa
  • Oliveira Souza, João Carlos
  • Oliveira, Paulo Roberto
  • Cruz Neto, João Xavier

Abstract

In this paper, we perform the steepest descent method for computing Riemannian center of mass on Hadamard manifolds. To this end, we extend convergence of the method to the Hadamard setting for continuously differentiable (possible nonconvex) functions which satisfy the Kurdyka–Łojasiewicz property. Some numerical experiments computing L^1 L 1 and L^2 L 2 center of mass in the context of positive definite symmetric matrices are presented using two different stepsize rules.

Topics

  • optimisation
  • decision theory
  • operations research
  • theory
  • manifold
  • weight
  • engineering
  • property
  • calculus of variation
  • experiment
  • Paea
  • Pifa
  • Pg
  • Pagb
  • Lafacbdk
  • Mbgj
  • Oef
  • Haacaa
  • Pdacca
  • Ef

Search in FID move catalog