Mobility Compass

Discover mobility and transportation research. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Mobility Compass is an open tool for improving networking and interdisciplinary exchange within mobility and transport research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

To Graph

8.032 Topics available

To Map

944 Locations available

509.604 PEOPLE
509.604 People People

509.604 People

Show results for 509.604 people that are selected by your search filters.

←

Page 1 of 20385

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Mouftah, Hussein T.
  • 1
  • 1
  • 2
  • 2025
Dugay, Fabrice
  • 3
  • 17
  • 6
  • 2025
Rettenmeier, Max
  • 4
  • 4
  • 28
  • 2025
Tomasch, ErnstGraz
  • 57
  • 166
  • 211
  • 2025
Cornaggia, Greta
  • 1
  • 4
  • 0
  • 2025
Palacios-Navarro, Guillermo
  • 1
  • 4
  • 2
  • 2025
Uspenskyi, Borys V.
  • 1
  • 3
  • 0
  • 2025
Khan, Baseem
  • 8
  • 38
  • 115
  • 2025
Fediai, Natalia
  • 6
  • 4
  • 6
  • 2025
Derakhshan, Shadi
  • 1
  • 0
  • 0
  • 2025
Somers, BartEindhoven
  • 13
  • 42
  • 246
  • 2025
Anvari, B.
  • 9
  • 31
  • 126
  • 2025
Kraushaar, SabineVienna
  • 2
  • 13
  • 0
  • 2025
Kehlbacher, Ariane
  • 10
  • 18
  • 14
  • 2025
Das, Raj
  • 3
  • 3
  • 17
  • 2025
Werbińska-Wojciechowska, Sylwia
  • 12
  • 12
  • 25
  • 2025
Brillinger, Markus
  • 4
  • 42
  • 4
  • 2025
Eskandari, Aref
  • 2
  • 13
  • 18
  • 2025
Gulliver, J.
  • 9
  • 74
  • 555
  • 2025
Loft, Shayne
  • 1
  • 9
  • 0
  • 2025
Kud, Bartosz
  • 1
  • 6
  • 0
  • 2025
Matijošius, JonasVilnius
  • 33
  • 89
  • 297
  • 2025
Piontek, Dennis
  • 6
  • 33
  • 30
  • 2025
Kene, Raymond O.
  • 2
  • 2
  • 30
  • 2025
Barbosa, Juliana
  • 3
  • 15
  • 11
  • 2025

Arutyunov, Aram V.

  • Google
  • 4
  • 4
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Coincidence Points of Parameterized Generalized Equations with Applications to Optimal Value Functions4citations
  • 2023Smoothing Procedure for Lipschitzian Equations and Continuity of Solutions2citations
  • 2020Continuous Selections of Solutions for Locally Lipschitzian Equations13citations
  • 2019Caristi-Like Condition and the Existence of Minima of Mappings in Partially Ordered Spaces6citations

Places of action

Chart of shared publication
Zhukovskiy, Sergey E.
4 / 5 shared
Mordukhovich, Boris S.
1 / 12 shared
Izmailov, Alexey F.
1 / 6 shared
Zhukovskiy, Evgeny S.
1 / 1 shared
Chart of publication period
2023
2020
2019

Co-Authors (by relevance)

  • Zhukovskiy, Sergey E.
  • Mordukhovich, Boris S.
  • Izmailov, Alexey F.
  • Zhukovskiy, Evgeny S.
OrganizationsLocationPeople

document

Coincidence Points of Parameterized Generalized Equations with Applications to Optimal Value Functions

  • Zhukovskiy, Sergey E.
  • Arutyunov, Aram V.
  • Mordukhovich, Boris S.
Abstract

The paper studies coincidence points of parameterized set-valued mappings (multifunctions), which provide an extended framework to cover several important topics in variational analysis and optimization that include the existence of solutions of parameterized generalized equations, implicit function and fixed-point theorems, optimal value functions in parametric optimization, etc. Using the advanced machinery of variational analysis and generalized differentiation that furnishes complete characterizations of well-posedness properties of multifunctions, we establish a general theorem ensuring the existence of parameter-dependent coincidence point mappings with explicit error bounds for parameterized multifunctions between infinite-dimensional spaces. The obtained major result yields a new implicit function theorem and allows us to derive efficient conditions for semicontinuity and continuity of optimal value functions associated with parametric minimization problems subject to constraints governed by parameterized generalized equations.

Topics
  • decision theory
  • machinery
  • operations research
  • theory
  • equation
  • bottleneck
  • constraint
  • engineering
  • calculus of variation
  • minimisation
  • Pifa
  • Lafb
  • Pg
  • Pagb
  • Paca
  • Taiacgg
  • Nfca
  • Oef
  • Pdacca
  • Paeah

Search in FID move catalog