Mobility Compass

Discover mobility and transportation research. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Mobility Compass is an open tool for improving networking and interdisciplinary exchange within mobility and transport research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

To Graph

7.909 Topics available

To Map

770 Locations available

380.250 PEOPLE
380.250 People People

380.250 People

Show results for 380.250 people that are selected by your search filters.

←

Page 1 of 15210

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Tekkaya, A. Erman
  • 4
  • 17
  • 97
  • 2024
Förster, Peter
  • 3
  • 11
  • 13
  • 2024
Mudimu, George T.
  • 3
  • 4
  • 0
  • 2024
Shibata, Lillian Marie
  • 1
  • 7
  • 0
  • 2024
Talabbeydokhti, Nasser
  • 1
  • 3
  • 1
  • 2024
Laffite, Ernesto Dante Rodriguez
  • 1
  • 7
  • 8
  • 2024
Schöpke, Benito
  • 1
  • 3
  • 1
  • 2024
Gobis, Anna
  • 4
  • 38
  • 18
  • 2024
Alfares, Hesham K.
  • 4
  • 4
  • 148
  • 2024
Münzel, Thomas
  • 30
  • 243
  • 1k
  • 2024
Joy, Gemini Velleringatt
  • 1
  • 3
  • 1
  • 2024
Oubahman, Laila
  • 1
  • 2
  • 2
  • 2024
Filali, Youssef
  • 2
  • 8
  • 4
  • 2024
Philippi, Paula
  • 1
  • 4
  • 3
  • 2024
George, Alinda
  • 3
  • 4
  • 10
  • 2024
Lucia, Caterina De
  • 1
  • 3
  • 0
  • 2024
Avril, Ludovic
  • 1
  • 5
  • 1
  • 2024
Belachew, Zigyalew Gashaw
  • 1
  • 1
  • 0
  • 2024
Kassens-Noor, EvaDarmstadt
  • 43
  • 54
  • 410
  • 2024
Cho, Seongchul
  • 1
  • 7
  • 1
  • 2024
Tonne, Cathryn
  • 13
  • 145
  • 1k
  • 2024
Hosseinlou, Farhad
  • 4
  • 12
  • 3
  • 2024
Ganvit, Harsh
  • 1
  • 2
  • 1
  • 2024
Schmitt, Konrad Erich Kork
  • 2
  • 6
  • 41
  • 2024
Grimm, Daniel
  • 7
  • 21
  • 63
  • 2024

Quesada-Arencibia, A.

  • Google
  • 4
  • 20
  • 15

Universidad de Las Palmas de Gran Canaria

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Data mining methodology for obtaining epidemiological data in the context of road transport systems1citations
  • 2014Using Massive Vehicle Positioning Data to Improve Control and Planning of Public Road Transport5citations
  • 2011Surface Classification for Road Distress Detection System Enhancement4citations
  • 2011Monocular Vision-based Target Detection on Dynamic Transport Infrastructures5citations

Places of action

Chart of shared publication
Padrón, Gabino
1 / 5 shared
García, Carmelo
1 / 3 shared
Alayón, Francisco
1 / 5 shared
Pérez, Ricardo
1 / 2 shared
Moreno-Diaz, R.
2 / 2 shared
Llorca, D. F.
2 / 33 shared
Quintero, R.
2 / 10 shared
Marcos, O.
2 / 5 shared
Gavilan, M.
1 / 16 shared
Garcia, I.
1 / 5 shared
Fernandez, C.
1 / 5 shared
Pichler, F.
2 / 13 shared
Sotelo, Miguel. A.
2 / 135 shared
Alvarez, S.
1 / 12 shared
Chart of publication period
2022
2014
2011

Co-Authors (by relevance)

  • Padrón, Gabino
  • García, Carmelo
  • Alayón, Francisco
  • Pérez, Ricardo
  • Moreno-Diaz, R.
  • Llorca, D. F.
  • Quintero, R.
  • Marcos, O.
  • Gavilan, M.
  • Garcia, I.
  • Fernandez, C.
  • Pichler, F.
  • Sotelo, Miguel. A.
  • Alvarez, S.
OrganizationsLocationPeople

document

Using Massive Vehicle Positioning Data to Improve Control and Planning of Public Road Transport

  • Padrón, Gabino
  • Quesada-Arencibia, A.
  • García, Carmelo
  • Alayón, Francisco
  • Pérez, Ricardo
Abstract

This study describes a system for the automatic recording of positioning data for public transport vehicles used on roads. With the data provided by this system, transportation-regulatory authorities can control, verify and improve the routes that vehicles use, while also providing new data to improve the representation of the transportation network and providing new services in the context of intelligent metropolitan areas. The system is executed autonomously in the vehicles, by recording their massive positioning data and transferring them to remote data banks for subsequent processing. To illustrate the utility of the system, we present a case of application that consists of identifying the points at which vehicles stop systematically, which may be points of scheduled stops or points at which traffic signals or road topology force the vehicle to stop. This identification is performed using pattern recognition techniques. The system has been applied under real operating conditions, providing the results discussed in the present study.

Topics
  • data
  • highway traffic
  • vehicle
  • planning
  • positioning
  • public transport
  • topology
  • train consist
  • intelligent transportation system
  • metropolitan area
  • position fixing
  • traffic signal
  • public road
  • data bank
  • automatic data collection system

Search in FID move catalog