467.600 PEOPLE
People | Locations | Statistics |
---|---|---|
Serhiienko, Serhii |
| |
Schmalz, Ulrike |
| |
Oliveira, Marisa |
| |
Ribeiro Pereira, Maria Teresa |
| |
Bellér, Gábor |
| |
Araujo, M. |
| |
Frey, Michael | Karlsruhe |
|
Coutinho-Rodrigues, João | Coimbra |
|
Wouters, Christian Guillaume Louise | Aachen |
|
Kessel, Paul J. Van Van |
| |
Árpád, István |
| |
Fontul, Simona |
| |
Kocsis, Dénes |
| |
Cigada, Alfredo | Milan |
|
Oort, Neils Van | Delft |
|
Agárdi, Anita | Miskolc |
|
Andrews, Gordon E. |
| |
Sousa, Nuno |
| |
Witlox, Frank Jacomina Albert | Ghent |
|
Dobruszkes, Frederic |
| |
Kiss, Judit T. |
| |
Hadachi, Amnir | Saint-Étienne-du-Rouvray |
|
Hamilton, Carl J. | Kunovice |
|
Misiura, Serhii |
| |
Schimpf, Marina |
|
Okhrin, Ostap
in Cooperation with on an Cooperation-Score of 37%
Topics
- data
- ship
- driving
- automobile
- behavior
- velocity
- trajectory
- learning
- river
- inland waterway
- stochastic process
- ship motion
- braking
- driving behavior
- emergency
- estimate
- visualisation
- acceleration
- microsimulation
- calibration
- car following
- vehicle mix
- equation
- goodness of fit
- numerical integration
- optimisation
- heuristic method
- validation
- forecasting
- landing
- machinery
- machine learning
- simulation
- mobility behavior
- young adult
- public transport
- city
- highway traffic
- choice of transport
- engineering
- incident management
- gridlock
- driver
- cyclist
- show 14 more
Publications
- 2022Vessel-following model for inland waterways based on deep reinforcement learning
- 2021Calibrating Wiedemann-99 Model Parameters to Trajectory Data of Mixed Vehicular Trafficcitations
- 2021Optimization of Wiedemann-99 Model Parameters for Mixed Traffic Using Vehicular Trajectory Data
- 2021Formulation and validation of a car-following model based on deep reinforcement learning
- 2020Using Open Source Data for Landing Time Prediction with Machine Learning Methodscitations
- 2017Fahrdynamikbasierte Entscheidungsmodelle zur mikroskopischen Simulation des Verkehrsflusses auf Binnenwasserstraßen
- 2015Klassifizierung junger Erwachsener anhand ihres Mobilitätsverhaltens – Eine empirische Analyse der großen SrV-Vergleichsstädte
- 2015Eine empirische Analyse des individuellen Verkehrsmittelwahlverhaltens am Beispiel der Stadt Dresden
- 2015Zuflussregulierung als Konzept eines selbstorganisierten Störfallmanagements zur Vermeidung von Gridlocks
- 2015Mobilitätsverhalten potentieller Radfahrer in Dresden Eine empirische Analyse
Places of action