Mobility Compass

Discover mobility and transportation research. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Mobility Compass is an open tool for improving networking and interdisciplinary exchange within mobility and transport research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

To Graph

7.990 Topics available

To Map

907 Locations available

469.901 PEOPLE
469.901 People People

469.901 People

Show results for 469.901 people that are selected by your search filters.

←

Page 1 of 18797

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Sourd, Romain Crastes Dit
  • 3
  • 9
  • 53
  • 2025
Marton, Peter
  • 2
  • 15
  • 0
  • 2025
Toaza, Bladimir
  • 3
  • 5
  • 91
  • 2025
Lubashevsky, Katrin
  • 2
  • 6
  • 0
  • 2025
Ambros, Jiří
  • 33
  • 90
  • 254
  • 2025
Niederdränk, Simon
  • 1
  • 2
  • 0
  • 2025
Khoshkha, Kaveh
  • 1
  • 4
  • 0
  • 2025
Brenner, Thomas
  • 19
  • 35
  • 269
  • 2025
Badea, AndreiDelft
  • 9
  • 41
  • 4
  • 2025
Michálek, TomášPardubice
  • 33
  • 39
  • 75
  • 2025
Jensen, Anders FjendboKongens Lyngby
  • 49
  • 150
  • 1k
  • 2025
Le Goff, A.
  • 1
  • 4
  • 0
  • 2025
Greer, Ross
  • 1
  • 8
  • 0
  • 2025
Gutiérrez, JavierMadrid
  • 90
  • 88
  • 2k
  • 2025
Sagues, Mikel
  • 2
  • 11
  • 3
  • 2025
Eggermond, Michael Van
  • 5
  • 20
  • 2
  • 2025
Milica Milovanović, M.
  • 1
  • 6
  • 0
  • 2025
Carrasco, Juan-Antonio
  • 12
  • 76
  • 613
  • 2025
Groen, Eric L.
  • 21
  • 103
  • 303
  • 2025
Tzenos, Panagiotis
  • 4
  • 19
  • 19
  • 2025
Mesas, Juan-José
  • 1
  • 6
  • 0
  • 2025
Oikonomou, Maria G.
  • 5
  • 23
  • 23
  • 2025
Messiou, Chrysovalanto
  • 1
  • 2
  • 0
  • 2025
Giuliani, Felice
  • 9
  • 26
  • 226
  • 2025
Roussou, Julia
  • 10
  • 68
  • 11
  • 2025

Morgan, Jacqueline

  • Google
  • 10
  • 12
  • 76

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2023Asymptotic behavior of subgame perfect Nash equilibria in Stackelberg games2citations
  • 2019Further on Inner Regularizations in Bilevel Optimization7citations
  • 2017Inner Regularizations and Viscosity Solutions for Pessimistic Bilevel Optimization Problems19citations
  • 2017Equilibrium selection in multi-leader-follower games with vertical information4citations
  • 2014On Ordered Weighted Averaging Social Optimacitations
  • 2009Equilibrium selection and altruistic behavior in noncooperative social networks2citations
  • 2007Asymptotical behavior of finite and possible discontinuous economies1citations
  • 2005Approximations and Well-Posedness in Multicriteria Games33citations
  • 2005Prefacecitations
  • 2002A new look for Stackelberg-Cournot equilibria in oligopolistic markets8citations

Places of action

Chart of shared publication
Caruso, Francesco
1 / 2 shared
Ceparano, Maria Carmela
2 / 3 shared
Lignola, M. Beatrice
2 / 2 shared
De Marco, Giuseppe
1 / 1 shared
Demarco, Giuseppe
1 / 1 shared
Scalzo, Vincenzo
1 / 3 shared
Peters, Hans
1 / 10 shared
Bilbao, Jesús Mario
1 / 1 shared
Flåm, Sjur D.
1 / 1 shared
Mallozzi, Lina
1 / 7 shared
Chart of publication period
2023
2019
2017
2014
2009
2007
2005
2002

Co-Authors (by relevance)

  • Caruso, Francesco
  • Ceparano, Maria Carmela
  • Lignola, M. Beatrice
  • De Marco, Giuseppe
  • Demarco, Giuseppe
  • Scalzo, Vincenzo
  • Peters, Hans
  • Bilbao, Jesús Mario
  • Flåm, Sjur D.
  • Mallozzi, Lina
OrganizationsLocationPeople

document

On Ordered Weighted Averaging Social Optima

  • Morgan, Jacqueline
  • De Marco, Giuseppe
Abstract

In this paper, we look at the classical problem of aggregating individual utilities and study social orderings which are based on the concept of Ordered Weighted Averaging Aggregation Operator. In these social orderings, called Ordered Weighted Averaging Social Welfare Functions, weights are assigned a priori to the positions in the social ranking and, for every possible alternative, the total welfare is calculated as a weighted sum in which the weight corresponding to the k th position multiplies the utility in the k th position. In the α -Ordered Weighted Averaging Social Welfare Function, the utility in the k th position is the k th smallest value assumed by the utility functions, whereas in the β -Ordered Weighted Averaging Social Welfare Function it is the utility of the k th poorest individual. We emphasize the differences between the two concepts, analyze the continuity issue, and provide results on the existence of maximum points.

Topics
  • decision theory
  • operations research
  • theory
  • optimisation
  • engineering
  • weight
  • calculus of variation

Search in FID move catalog