People | Locations | Statistics |
---|---|---|
Ziakopoulos, Apostolos | Athens |
|
Vigliani, Alessandro | Turin |
|
Catani, Jacopo | Rome |
|
Statheros, Thomas | Stevenage |
|
Utriainen, Roni | Tampere |
|
Guglieri, Giorgio | Turin |
|
Martínez Sánchez, Joaquín |
| |
Tobolar, Jakub |
| |
Volodarets, M. |
| |
Piwowar, Piotr |
| |
Tennoy, Aud | Oslo |
|
Matos, Ana Rita |
| |
Cicevic, Svetlana |
| |
Sommer, Carsten | Kassel |
|
Liu, Meiqi |
| |
Pirdavani, Ali | Hasselt |
|
Niklaß, Malte |
| |
Lima, Pedro | Braga |
|
Turunen, Anu W. |
| |
Antunes, Carlos Henggeler |
| |
Krasnov, Oleg A. |
| |
Lopes, Joao P. |
| |
Turan, Osman |
| |
Lučanin, Vojkan | Belgrade |
|
Tanaskovic, Jovan |
|
Rinkkala, Paavo
in Cooperation with on an Cooperation-Score of 37%
Topics
- eye
- automobile
- algorithm
- simulation
- behavior
- laboratory
- human being
- regression analysis
- travel
- steering
- sampling
- psychology
- eye movement
- tangent
- driver
- driving
- modeling
- variable
- crash
- attention
- longitudinal control
- vision
- headway
- crossheading
- data file
- experiment
- engineering
- virtual reality
- brake
- automobile driver
- car following
- uncertainty
- instrumented vehicle
- state of the art
- visual perception
- show 5 more
Publications (2/2 displayed)
Places of action
article
Humans use Optokinetic Eye Movements to Track Waypoints for Steering
Abstract
It is well-established how visual stimuli and self-motion in laboratory conditions reliably elicit retinal-image-stabilizing compensatory eye movements (CEM). Their organization and roles in natural-task gaze strategies is much less understood: are CEM applied in active sampling of visual information in human locomotion in the wild? If so, how? And what are the implications for guidance? Here, we directly compare gaze behavior in the real world (driving a car) and a fixed base simulation steering task. A strong and quantifiable correspondence between self-rotation and CEM counter-rotation is found across a range of speeds. This gaze behavior is “optokinetic”, i.e. optic flow is a sufficient stimulus to spontaneously elicit it in naïve subjects and vestibular stimulation or stereopsis are not critical. Theoretically, the observed nystagmus behavior is consistent with tracking waypoints on the future path, and predicted by waypoint models of locomotor control - but inconsistent with travel point models, such as the popular tangent point model.
Topics
Search in FID move catalog