People | Locations | Statistics |
---|---|---|
Tekkaya, A. Erman |
| |
Förster, Peter |
| |
Mudimu, George T. |
| |
Shibata, Lillian Marie |
| |
Talabbeydokhti, Nasser |
| |
Laffite, Ernesto Dante Rodriguez |
| |
Schöpke, Benito |
| |
Gobis, Anna |
| |
Alfares, Hesham K. |
| |
Münzel, Thomas |
| |
Joy, Gemini Velleringatt |
| |
Oubahman, Laila |
| |
Filali, Youssef |
| |
Philippi, Paula |
| |
George, Alinda |
| |
Lucia, Caterina De |
| |
Avril, Ludovic |
| |
Belachew, Zigyalew Gashaw |
| |
Kassens-Noor, Eva | Darmstadt |
|
Cho, Seongchul |
| |
Tonne, Cathryn |
| |
Hosseinlou, Farhad |
| |
Ganvit, Harsh |
| |
Schmitt, Konrad Erich Kork |
| |
Grimm, Daniel |
|
Maji, Avijit
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Optimizing Points of Intersection for Highway and Railway Alignment—Using Path Planner Method and Ant Algorithm-Based Approachcitations
- 2023Decision Tree Analyses of Safety and Comfort Perceptions for Public Transportation in Kalyan-Dombivli Region of Maharashtra
- 2023A Review of Key Socio-economic Factors Affecting High-Speed Rail Station Location Selectioncitations
- 2022Speed-Based Safety Evaluation of Horizontal Curves in Rural Highwayscitations
- 2022Analysis of Drivers’ Speed Behavior Along Horizontal Curves of Two-Lane Rural Highways Using Driving Simulatorcitations
- 2022A Global Perspective of Railway Security
- 2022BPNN (ANN) Based Operating Speed Models for Horizontal Curves Using Naturalistic Driving Data
- 2022Calibration and Validation of VISSIM Parameters in Mixed Traffic
- 2020Risk Assessment of Horizontal Curves Based on Lateral Acceleration Index: A Driving Simulator-Based Studycitations
- 2019Effect of Horizontal Curve Geometry on the Maximum Speed Reduction: A Driving Simulator-Based Studycitations
- 2019Multivariate Analysis on Dynamic Car-Following Data of Non-lane-Based Traffic Environmentscitations
- 2019Optimization of high-speed railway station location selection based on accessibility and environmental impact
- 2019Operating speed prediction model as a tool for consistency based geometric design of four-lane divided highwayscitations
- 2018Speed prediction models for car and sports utility vehicle at locations along four-lane median divided horizontal curvescitations
- 2016Vehicle Speed Characteristics and Alignment Design Consistency for Mountainous Roadscitations
- 2016Developing probabilistic approach for asphaltic overlay design by considering variability of input parameterscitations
- 2015Performance-based intersection layout under a flyover for heterogeneous trafficcitations
Places of action
Organizations | Location | People |
---|
document
A Review of Key Socio-economic Factors Affecting High-Speed Rail Station Location Selection
Abstract
High-Speed Railway (HSR) location selection is a multidimensional process involving choosing the best station locations, corridors and alignment connecting the stations. Only by strategically placing the HSR stations, can the advantages of shorter intercity travel times, comfort, and safety associated with HSR be fully realized. Therefore, choosing a suitable HSR station location is essential while planning an HSR facility. The significant aspects affecting station location selection are ridership, connectivity to other modes of transportation, the costs associated with the stakeholders, socio-economic impacts, environmental feasibility, and inter-station spacing. The limitation of the existing literature is that only a few combinations of these aspects were considered in the optimization formulation to simplify the problem and make it computationally less expensive. Few studies have taken into account these aspects for urban rails, which may not be directly applicable to HSR. Based on the existing literature in this field, this paper discusses the important factors to consider when choosing an HSR station location.
Topics
Search in FID move catalog