People | Locations | Statistics |
---|---|---|
Ziakopoulos, Apostolos | Athens |
|
Vigliani, Alessandro | Turin |
|
Catani, Jacopo | Rome |
|
Statheros, Thomas | Stevenage |
|
Utriainen, Roni | Tampere |
|
Guglieri, Giorgio | Turin |
|
Martínez Sánchez, Joaquín |
| |
Tobolar, Jakub |
| |
Volodarets, M. |
| |
Piwowar, Piotr |
| |
Tennoy, Aud | Oslo |
|
Matos, Ana Rita |
| |
Cicevic, Svetlana |
| |
Sommer, Carsten | Kassel |
|
Liu, Meiqi |
| |
Pirdavani, Ali | Hasselt |
|
Niklaß, Malte |
| |
Lima, Pedro | Braga |
|
Turunen, Anu W. |
| |
Antunes, Carlos Henggeler |
| |
Krasnov, Oleg A. |
| |
Lopes, Joao P. |
| |
Turan, Osman |
| |
Lučanin, Vojkan | Belgrade |
|
Tanaskovic, Jovan |
|
Felux, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
- air traffic
- radar
- air traffic control
- aircraft
- data
- crowd
- sea
- ocean
- flight
- surveillance
- region
- engineering
- civil aviation
- radio equipment
- navigational satellite
- flight crew
- flight plan
- radio frequency
- radio frequency interference
- aircraft pilotage
- estimate
- safety
- altitude
- profit
- alertness
- airspace
- drone
- assessment
- airport
- positioning
- position fixing
- protection
- cat
- Ground Based Augmentation System
- vision
- filter
- rotor
- flight test
- re-procurement
- transport aircraft
- test vehicle
- waiting time
- air traffic control facility
- multipath transmission
- landing
- monitoring
- supervisor
- alarm system
- polar region
- ionosphere
- supporting
- data collection
- attention
- behavior
- definition
- male
- electromagnetic spectrum
- instrumentation
- avionics
- aviation
- interference
- correlation analysis
- downtime
- recording instrument
- picture
- prevention
- terrain
- warning system
- airline
- cockpit
- cockpit crew
- control device
- sensor
- AIDS
- satellite navigation system
- dispatcher
- air traffic controller
- broadcasting
- midair crash
- radio navigation
- experiment
- security
- instrument landing system
- simulation
- antenna
- international airport
- workload
- algorithm
- estimating
- synthetic
- communication system
- machinery
- learning
- machine learning
- employed
- face
- modernization
- wide area network
- procurement
- coding system
- expected value
- airframe
- design standard
- implementation
- committee
- prototype
- civil aircraft
- modeling
- automatic pilot
- planning
- train consist
- architecture
- standardisation
- geometry
- motivation
- recommendation
- inflation
- normal distribution
- system availability
- noise
- choke
- design
- airport runway
- reflection
- bubble
- Statistic
- validation
- electron
- airworthiness
- minimisation
- wind
- runway overrun
- deviation
- certification
- airport capacity
- trajectory
- specification
- weather condition
- measuring instrument
- visibility
- test bed
- screening
- forecasting
- infrastructure
- accumulator
- distress
- autumn
- uncertainty
- base line
- performance evaluation
- standard deviation
- hinge
- accelerometer
- inertial navigation system
- amphetamine
- show 125 more
Publications
- 2023Analysis of GNSS disruptions in European airspace
- 2022GNSS Jamming and Its Effect on Air Traffic in Eastern Europe
- 2022GBAS use cases beyond what was envisioned – drone navigation
- 2022Flight testing GBAS for UAV operations
- 2022Airborne Ionospheric Gradient Monitoring for Dual-Frequency GBAS
- 2022A standardizeable framework enabling DME/DME to support RNP
- 2022Impact of GNSS-band radio interference on operational avionics
- 2022Identification and operational impact analysis of GNSS RFI based on flight crew reports and ADS-B data
- 2022Impact of GNSS outage on mid-air collision
- 2021Flight trial demonstration of secure GBAS via the L-band digital aeronautical communications system (LDACS)citations
- 2021Final results on airborne multipath models for dualconstellation dual-frequency aviation applications
- 2021Impact of RFI on GNSS and avionics : a view from the cockpitcitations
- 2021Network-based ionospheric gradient monitoring to support GBAScitations
- 2021Flight Trial Demonstration of Secure GBAS via the L-band Digital Aeronautical Communication System (LDACS)citations
- 2020Combined Multilateration with Machine Learning for Enhanced Aircraft Localizationcitations
- 2020Network-Based Ionospheric Gradient Monitoring to Support GBAS
- 2019Towards Airborne Multipath Models for Dual Constellation and Dual Frequency GNSScitations
- 2019Initial results for dual constellation dual-frequency multipath models
- 2018Total System Performance of GBAS-based Automatic Landings ; Leistungsfähigkeit des Gesamtsystems GBAS-basierter Automatischer Landungen
- 2018Transmitting GBAS messages via LDACS
- 2018Total System Performance of GBAS-based Automatic Landings
- 2017Ionospheric Gradient Threat Mitigation in Future Dual Frequency GBAScitations
- 2017Future Dual Frequency Multi Constellation GBAS
- 2017Using a Wide Area Receiver Network to Support GBAS Ionospheric Monitoring
- 2017Future GBAS Processing - Do we need an ionosphere-free mode?
- 2016Multi-constellation GBAS: how to benefit from a second constellation
- 2015GBAS Ground Monitoring Requirements from an Airworthiness Perspectivecitations
- 2015Total System Performance in GBAS-based Landings
- 2013GBAS Approach Guidance Performance – A comparison to ILS
- 2012Approach service type D evaluation of the DLR GBAS testbedcitations
- 2012Flight Testing the GAST D Solution at DLR's GBAS Test Bed
- 2011Approach service type D evaluation of the DLR GBAS testbedcitations
- 2011Evaluation of GBAS Flight Tests with respect to GAST-D Requirements
- 2011GAST-D Monitoring Results from Post-processed Flight Trial Data - Performance Evaluation of DLR´s GBAS Testbed
- 2009A Robust and Effective GNSS/INS Integration Optimizing Cost and Effort
Places of action
conferencepaper
A Robust and Effective GNSS/INS Integration Optimizing Cost and Effort
Abstract
Meeting all requirements for ying approaches in bad weather conditions is one of the most demanding and challenging aspects of present day airborne navigation. Stand-alone satellite navigation has not yet reached the point of being suciently robust and accurate in order to reach certication level. Therefore, in this work the performance of an integrated satellite/inertial navigation system (GNSS/INS) is investigated in order to cope with short term losses of GNSS signals. We consider a low-cost Micro Electronic Mechanical System (MEMS) INS which is constantly reinitialized with information coming solely from GNSS. It takes over navigational responsibility when a loss of signal occurs or other failures in the satellite navigation system are detected. For the GNSS to provide all information necessary to initialize an INS, a minimum of three antennas is needed to measure the aircraft's attitude along with its speed and position. Error models for positioning, speed and attitude estimation are used to create a model for initialization uncertainties. Together with error models for the accelerometers and gyros in the Inertial Measurement Unit (IMU), the behavior of the whole proposed architecture is determined via performance simulations. As a maximum allowable error 15.3 meters (which corresponds to the CAT III horizontal alert limit for GNSS approaches) are taken. Our simulations show that this limit is not exceeded for at least 14 seconds after the take-over of navigational responsibility by the INS.
Topics
Search in FID move catalog