People | Locations | Statistics |
---|---|---|
Ziakopoulos, Apostolos | Athens |
|
Vigliani, Alessandro | Turin |
|
Catani, Jacopo | Rome |
|
Statheros, Thomas | Stevenage |
|
Utriainen, Roni | Tampere |
|
Guglieri, Giorgio | Turin |
|
Martínez Sánchez, Joaquín |
| |
Tobolar, Jakub |
| |
Volodarets, M. |
| |
Piwowar, Piotr |
| |
Tennoy, Aud | Oslo |
|
Matos, Ana Rita |
| |
Cicevic, Svetlana |
| |
Sommer, Carsten | Kassel |
|
Liu, Meiqi |
| |
Pirdavani, Ali | Hasselt |
|
Niklaß, Malte |
| |
Lima, Pedro | Braga |
|
Turunen, Anu W. |
| |
Antunes, Carlos Henggeler |
| |
Krasnov, Oleg A. |
| |
Lopes, Joao P. |
| |
Turan, Osman |
| |
Lučanin, Vojkan | Belgrade |
|
Tanaskovic, Jovan |
|
Felux, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
- air traffic
- radar
- air traffic control
- aircraft
- data
- crowd
- sea
- ocean
- flight
- surveillance
- region
- engineering
- civil aviation
- radio equipment
- navigational satellite
- flight crew
- flight plan
- radio frequency
- radio frequency interference
- aircraft pilotage
- estimate
- safety
- altitude
- profit
- alertness
- airspace
- drone
- assessment
- airport
- positioning
- position fixing
- protection
- cat
- Ground Based Augmentation System
- vision
- filter
- rotor
- flight test
- re-procurement
- transport aircraft
- test vehicle
- waiting time
- air traffic control facility
- multipath transmission
- landing
- monitoring
- supervisor
- alarm system
- polar region
- ionosphere
- supporting
- data collection
- attention
- behavior
- definition
- male
- electromagnetic spectrum
- instrumentation
- avionics
- aviation
- interference
- correlation analysis
- downtime
- recording instrument
- picture
- prevention
- terrain
- warning system
- airline
- cockpit
- cockpit crew
- control device
- sensor
- AIDS
- satellite navigation system
- dispatcher
- air traffic controller
- broadcasting
- midair crash
- radio navigation
- experiment
- security
- instrument landing system
- simulation
- antenna
- international airport
- workload
- algorithm
- estimating
- synthetic
- communication system
- machinery
- learning
- machine learning
- employed
- face
- modernization
- wide area network
- procurement
- coding system
- expected value
- airframe
- design standard
- implementation
- committee
- prototype
- civil aircraft
- modeling
- automatic pilot
- planning
- train consist
- architecture
- standardisation
- geometry
- motivation
- recommendation
- inflation
- normal distribution
- system availability
- noise
- choke
- design
- airport runway
- reflection
- bubble
- Statistic
- validation
- electron
- airworthiness
- minimisation
- wind
- runway overrun
- deviation
- certification
- airport capacity
- trajectory
- specification
- weather condition
- measuring instrument
- visibility
- test bed
- screening
- forecasting
- infrastructure
- accumulator
- distress
- autumn
- uncertainty
- base line
- performance evaluation
- standard deviation
- hinge
- accelerometer
- inertial navigation system
- amphetamine
- show 125 more
Publications (35/35 displayed)
- 2023Analysis of GNSS disruptions in European airspace
- 2022GNSS Jamming and Its Effect on Air Traffic in Eastern Europe
- 2022GBAS use cases beyond what was envisioned – drone navigation
- 2022Flight testing GBAS for UAV operations
- 2022Airborne Ionospheric Gradient Monitoring for Dual-Frequency GBAS
- 2022A standardizeable framework enabling DME/DME to support RNP
- 2022Impact of GNSS-band radio interference on operational avionics
- 2022Identification and operational impact analysis of GNSS RFI based on flight crew reports and ADS-B data
- 2022Impact of GNSS outage on mid-air collision
- 2021Flight trial demonstration of secure GBAS via the L-band digital aeronautical communications system (LDACS)citations
- 2021Final results on airborne multipath models for dualconstellation dual-frequency aviation applications
- 2021Impact of RFI on GNSS and avionics : a view from the cockpitcitations
- 2021Network-based ionospheric gradient monitoring to support GBAScitations
- 2021Flight Trial Demonstration of Secure GBAS via the L-band Digital Aeronautical Communication System (LDACS)citations
- 2020Combined Multilateration with Machine Learning for Enhanced Aircraft Localizationcitations
- 2020Network-Based Ionospheric Gradient Monitoring to Support GBAS
- 2019Towards Airborne Multipath Models for Dual Constellation and Dual Frequency GNSScitations
- 2019Initial results for dual constellation dual-frequency multipath models
- 2018Total System Performance of GBAS-based Automatic Landings ; Leistungsfähigkeit des Gesamtsystems GBAS-basierter Automatischer Landungen
- 2018Transmitting GBAS messages via LDACS
- 2018Total System Performance of GBAS-based Automatic Landings
- 2017Ionospheric Gradient Threat Mitigation in Future Dual Frequency GBAScitations
- 2017Future Dual Frequency Multi Constellation GBAS
- 2017Using a Wide Area Receiver Network to Support GBAS Ionospheric Monitoring
- 2017Future GBAS Processing - Do we need an ionosphere-free mode?
- 2016Multi-constellation GBAS: how to benefit from a second constellation
- 2015GBAS Ground Monitoring Requirements from an Airworthiness Perspectivecitations
- 2015Total System Performance in GBAS-based Landings
- 2013GBAS Approach Guidance Performance – A comparison to ILS
- 2012Approach service type D evaluation of the DLR GBAS testbedcitations
- 2012Flight Testing the GAST D Solution at DLR's GBAS Test Bed
- 2011Approach service type D evaluation of the DLR GBAS testbedcitations
- 2011Evaluation of GBAS Flight Tests with respect to GAST-D Requirements
- 2011GAST-D Monitoring Results from Post-processed Flight Trial Data - Performance Evaluation of DLR´s GBAS Testbed
- 2009A Robust and Effective GNSS/INS Integration Optimizing Cost and Effort
Places of action
conferencepaper
Initial results for dual constellation dual-frequency multipath models
Abstract
This paper presents an update of the ongoing work to develop dual frequency dual constellation airborne multipath models for Galileo E1, E5a and GPS L1 and GPS L5 in the frame of the project DUFMAN (Dual Frequency Multipath Models for Aviation) funded by the European Commission. The goal of this activity is to support the development and implementation of airborne GNSS-based navigation solutions, such as Advanced Receiver Autonomous Integrity Monitoring (ARAIM), dual-frequency multiconstellation Satellite Based Augmentation System (SBAS) and dual-frequency multi-constellation Ground based Augmentation System (GBAS). Previous work described the methodology proposed to derive the airborne multipath models and presented preliminary multipath models obtained from an experimental installation. In this paper we present the initial results obtained from flight campaigns conducted within DUFMAN on Airbus commercial aircraft. The measurements are collected from prototypes of dual-frequency multi-constellation avionics receiver and the antenna installed on the aircraft has been selected to meet at best the current dual-frequency dual-constellation antenna requirements. In addition to the initial results obtained from avionics hardware, the impact of the different receiver correlator spacing and bandwidth is investigated and discussed.
Topics
Search in FID move catalog